
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

E3SM-MMF Experiences with AMD Hardware

Matt Norman (ORNL); Mark Taylor (SNL);
Walter Hannah (LLNL); Benjamin Hillman (SNL);
Kyle Pressel (PNNL); Chris Eldred (SNL);
Isaac Lyngaas (ORNL);
Murali Gopalakrishnan Meena (ORNL)

OLCF User Meeting, 2021

22 Performance Portable C++ for Scientists and Engineers

Acknowledgements

• This research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

• This research was supported by the Exascale Computing Project (17-SC-20-
SC), a joint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

33 Performance Portable C++ for Scientists and Engineers

E3SM Multiscale Modeling Framework (E3SM-MMF)

• Energy Exascale Earth System Model: U.S. DOE hi-res climate model

– Collection of atmosphere, ocean, land surface, sea ice, and land ice

• Multi-scale Modeling Framework (E3SM-MMF)

– Embed hi-res (1km) Cloud Resolving Model (CRM) at each global model grid point

– Explicit simulate moist convection on reduced domain

– Improves upon heuristic “parameterization” for moist convection

– 2 million lines of mostly Fortran 77, 90, 2003+

– Threading is poorly exposed

– Heavily reliant on Fortran classes, pointers, TBPs

• >90% of runtime concentrated in CRM code

– Only 10-20K lines of code

– Natural target for acceleration

E3SM
CRM

44 Performance Portable C++ for Scientists and Engineers

Approach to AMD Hardware and Portability

• We chose to use C++ portability over Fortran + Directives

1. C++ can conveniently describe any code as an object (Lambdas)
– We can then launch this code on CUDA, HIP, SYCL, OpenMP, etc. ourselves

– Fortran cannot do this at this time

2. C is typically the first implementation a vendor develops
– This is critical for efforts that must work on “day 1” for new architectures

3. C is the more reliable implementation
– Fortran is less popular overall: fewer dedicated developers

– C++ classes/templates better defined by standards than modern Fortran constructs

• However: Porting from Fortran to C++ is time consuming
– Also, significant effort is needed to keep C++ user-level code readable

– C++ Lambda capture semantics can be confusing to domain scientists

– Have to put guardrails on C++ experts (reliance on std::, virtual inheritance, etc.)

55 Performance Portable C++ for Scientists and Engineers

What is Portable C++?

• A C++ library, not a separate language or a language extension

• Based on the “kernel” paradigm (e.g., CUDA, HIP, SYCL, …):

– A kernel performs work on a single thread

– Let the launcher know how many threads to launch

– Requires no more work or information than you’re already used to providing

Kernel is the loop
body

Loops define the
threading

66 Performance Portable C++ for Scientists and Engineers

The Core of Portable C++

Threading

Kernel

77 Performance Portable C++ for Scientists and Engineers

The Core of Portable C++

• C++ can pass code as an object

• C++ “lambdas” convert code into a class object for you

• You can then pass the code to whatever backend you want

– “parallel_for” can launch with CUDA, HIP, OpenMP, OpenMP 4.5+, SYCL, etc.

• Just as flexible and generic as directives

88 Performance Portable C++ for Scientists and Engineers

Yet Another Kernel Launcher (YAKL)

• C++ Performance Portability Library for Fortran, simplicity, & readability
– https://github.com/mrnorman/YAKL

• Syntax patterned after Kokkos & interoperates easily with Kokkos

• Focus on simplicity
– Only one level of parallelism

• Two levels of parallelism: already making statements about hardware
– Only two memory spaces: host and device

• Allows Fortran-like behavior in multi-dimensional arrays
– One-based indexing, column-major index ordering, basic slicing
– Limited Fortran intrinsic library (size, shape, maxval, minloc, sum, etc.)

• Interacts with Fortran
– Wrap existing Fortran allocations in YAKL Fortran-like Arrays
– Pool allocator with CUDA Managed Memory hooks and Fortran hooks
– Enables an incremental porting path with relatively little code change

• Convenient NetCDF, FFT, tridiagonal utilities for YAKL Arrays

https://github.com/mrnorman/YAKL

99 Performance Portable C++ for Scientists and Engineers

YAKL Fortran-Like Multi-Dimensional Arrays

Fortran code: Finite-
Volume update from fluxes

Equivalent Portable C++

1010 Performance Portable C++ for Scientists and Engineers

YAKL Fortran-Like Multi-Dimensional Arrays

• YAKL Arrays inherently behave like Fortran assumed-shape arrays

– They carry all metadata with them:

• In practice, you would want to tile this loop

1111 Performance Portable C++ for Scientists and Engineers

YAKL Reduction & Limited Fortran Intrinsics Library

• Computing the maximum stable time step for Shallow Water

(Portable C++)

1212 Performance Portable C++ for Scientists and Engineers

Future Plans for YAKL

• YAKL currently works on CPU (serial), Nvidia GPUs, and AMD GPUs

• YAKL works on Intel GPUs with OpenMP Offload backend

– Except for atomic min and max instructions (waiting on OpenMP 5.1 implementations)

• SYCL backend (Intel) is waiting on “is_memcpyable” implementation

• Coming soon to a YAKL near you:

– CPU threading (OpenMP first, then pthreads for more efficiency if needed)

– An approach to cache blocking and SIMD vectorizations

• Long term plan: create a version of YAKL that wraps Kokkos for as many

components as possible

1313 Performance Portable C++ for Scientists and Engineers

Algorithmic Advances for GPU Hardware

• Important to consider algorithms better suited for GPUs

• Arithmetically intense algorithms perform well on all architectures

• Increase computations while decreasing data movement

• E3SM-MMF Algorithmic Improvement Examples:

– “A high-order WENO-limited finite-volume algorithm for atmospheric
flow using the ADER-differential transform time discretization”
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3989

– “A Holistic Algorithmic Approach to Improving Accuracy, Robustness,
and Computational Efficiency for Atmospheric Dynamics”
https://epubs.siam.org/doi/abs/10.1137/19M128435X

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3989
https://epubs.siam.org/doi/abs/10.1137/19M128435X

1414 Performance Portable C++ for Scientists and Engineers

Algorithmic Advances for GPU Hardware: High-Order

3rd 5th

7th 9th

• Splitting supercell test case

– Cartesian grid

– High CAPE, initial thermal

– Splits into two cells

– Doesn’t use added
viscosity from test case

• AWFL + P3 microphysics

• 20 second physics time step

– Dycore sub-cycled

• 5km vertical velocity after
2 hrs plotted on right

1515 Performance Portable C++ for Scientists and Engineers

Algorithmic Advances for GPU Hardware: WENO Limiting

Without WENO limiting

With WENO limiting

1616 Performance Portable C++ for Scientists and Engineers

New Algorithm Increases Arithmetic Intensity

• Reconstruct variation from stencil

• Apply WENO limiting

• Compute high-order ADER time-average

• Compute upwind fluxes

• Update the cell average from fluxes

• Vast majority of computations use only a small stencil of data from DRAM

– Significant compute intensity

– Time stepping happens in the same loop as reconstruction / limiting

• Most expensive kernels: 80% peak flop/s on V100; “Quite good” on MI-60

• Currently working on MI-100 results

1717 Performance Portable C++ for Scientists and Engineers

Further Resources & Questions

• YAKL Documentation: https://github.com/mrnorman/YAKL

• miniWeather parallel programming training app:

https://github.com/mrnorman/miniWeather

• Readable C++: https://tinyurl.com/readable-cplusplus

• C++ Portability for Directives Folks: https://tinyurl.com/cplusplus-portability

• Other (more functional) C++ Portability Frameworks:

– Kokkos: https://github.com/kokkos/kokkos/

– RAJA: https://github.com/LLNL/RAJA

• UMPIRE: https://github.com/LLNL/Umpire

– SYCL: https://github.com/KhronosGroup/SYCL-Docs

https://github.com/mrnorman/YAKL
https://github.com/mrnorman/miniWeather
https://tinyurl.com/readable-cplusplus
https://tinyurl.com/cplusplus-portability
https://github.com/kokkos/kokkos/
https://github.com/LLNL/RAJA
https://github.com/LLNL/Umpire
https://github.com/KhronosGroup/SYCL-Docs

1818 Performance Portable C++ for Scientists and Engineers

Challenges with Portable C++

• Vectorization

– C++ has less information than Fortran

– C++ pointers need “restrict” keyword to allow the compiler to optimize more

• Staying away from non-portable C++ features

– Most of the standard template library (“std::”) is either invalid or non-portable for GPUs

– Virtual functions in class inheritance is difficult on GPUs

• Unified shared memory helps with “std::” , but…

– Unified memory often performs poorly

– Unified memory isn’t portable to all compilers and hardware

• C++ Lambdas behave strangely

– They only “capture” needed data automatically if it’s in the local scope

– Global scope and class data are not captured automatically (more on this later)

• Portable C++ requires a rewrite of Fortran

– However, YAKL significantly reduces this burden by allowing Fortran-like behavior

1919 Performance Portable C++ for Scientists and Engineers

YAKL Scalar Live-Out

• Scalars written to in a device kernel and read from outside the kernel

– Scalars are normally thread-private; here they must be allocated on the device

– “Scalar Live-Out” is most common in error-checking routines

2020 Performance Portable C++ for Scientists and Engineers

YAKL Scalar Live-Out

Fortran

C++ Portability

2121 Performance Portable C++ for Scientists and Engineers

YAKL Pool Allocator (Gator)

• The YAKL “pool alligator” (speech-to-text error)

• Allows cheap frequent allocations & free’s

– Optimized for “stack-like” allocation patterns

– Most Fortran apps allocate in a stack-like fashion

– Little to no segmentation and wasted memory

– Does not behave well for random allocation

patterns

• Fortran hooks for up to 7-D arrays

• Allows CUDA & HIP Managed Memory

– Automatic hooks into OpenACC and OpenMP

runtimes so data is handled by CUDA & HIP

• Controlled by environment variables

2222 Performance Portable C++ for Scientists and Engineers

Readability

• Able to find the code

– Need a very good reason for > 1 level of abstraction

– Some code duplication is OK, it’s a balance

– Loops should live together, one after the other

• Comfortable syntax

– The syntax should be familiar, Fortran-like, and clear

– No “figuring out” what the code is doing (nothing “clever” or any such adjective)

– Hide metaprogramming, SFINAE, complex template expressions from the user

– Developer profanity should be minimized

• Looping should be clear

– Typically no need for C++ iterators

• Data structures should be clear (Multi-dimensional Arrays)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Upwind Finite-Volume Spatial Discretization

• Finite-Volume Algorithm
• Solution is a set of non-overlapping cell averages

• Cell average updates based on cell-edge fluxes

• Use upwind Riemann solver to determine fluxes

• Reconstruct intra-cell variation from surrounding “stencil” of cells

• Advantages
• Conserves variables to machine precision

• Large time step

• Treats each Degree Of Freedom individually (accuracy)

• Unconditionally stable for Euler eqns without added dissipation

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Weighted Essentially Non-Oscillatory Limiting (WENO)

• WENO Algorithm
• Compute multiple polynomials using multiple stencils

• Weight the most oscillatory polynomials the lowest
• Custom low-dissipation implementation

• Advantages
• Requires no additional data when used with Finite-Volume
• Very accurate and effective at limiting oscillations

𝒑𝟏 𝒙

𝒑𝟐 𝒙

𝒑𝟑 𝒙

𝒑𝒉𝒊𝒈𝒉−𝒐𝒓𝒅𝒆𝒓 𝒙

2525 Performance Portable C++ for Scientists and Engineers

Other Advantages of Portable C++

• Debugging

– Fortran array metadata can change in routine interfaces (# of dimensions & sizes)

• Thus, Fortran index checking can never fully be trusted

– C++ Array class metadata is tied to the Array object and never changes

• C++ index checking is far more reliable because of this

– C++ exception throwing makes stack tracing more direct as well (e.g., in gdb)

• C++ compilers inline much better than Fortran compilers typically do

– Rarely any need for an equivalent of “!$acc routine” or “!$omp declare target”

– “!$acc routine” and OpenMP equivalent are typically quite buggy

• Simple C++ templating can significantly reduce code duplication

– No more complex Fortran interface blocks for multiple data types

2626 Performance Portable C++ for Scientists and Engineers

YAKL Fortran-Like Multi-Dimensional Arrays

• Use C++ “typedef” and “using” in a header to hide unsightly C++

namespace and template expressions

2727 Performance Portable C++ for Scientists and Engineers

YAKL Atomic

• Compute a column average:

Fortran

C++ Portability

